A Coordinated Electric System Interconnection Review—the utility’s deep-dive on technical and cost impacts of your project.

Challenge: Frequent false tripping using conventional electromechanical relays
Solution: SEL-487E integration with multi-terminal differential protection and dynamic inrush restraint
Result: 90% reduction in false trips, saving over $250,000 in downtime

Ensuring Design Stability in Power System Projects: Best Practices and Upcoming NERC Reporting Deadlines

A black and white icon of a calendar with dots on it. D

May 30, 2025 | Blog

A man and a woman are looking at a map.

Introduction

In today’s rapidly evolving electric grid landscape, design stability is critical for maintaining reliable, resilient, and compliant infrastructure. Stability issues, if not addressed early, can derail project timelines, increase costs, and create compliance risks. With growing scrutiny from NERC (North American Electric Reliability Corporation) and other regulatory bodies, it is essential for project developers and engineers to adopt best practices that minimize late-stage design or model changes.

This blog explores how leveraging publicly available interconnection requirements, early OEM (Original Equipment Manufacturer) engagement, and clear purchase agreement clauses can strengthen design stability. Additionally, it outlines key reporting deadlines for NERC compliance in 2025, including:

  • Acknowledge Alert: By May 27, 2025
  • Submit Report to NERC: By August 18, 2025

Why Design Stability Matters in Grid Interconnection

Power system design is inherently complex. In large-scale grid-tied projects—particularly those involving inverter-based resources (IBRs) such as solar, wind, or battery storage—stability must be ensured from initial modeling to operational handover.

Design stability means:

  • Minimizing unexpected changes to the power flow, dynamic models, and protection schemes.
  • Aligning with transmission operator and interconnection authority requirements.
  • Ensuring that changes in equipment, topology, or control systems do not introduce new reliability risks.

Benefits of Stable Design:

  • Fewer rework cycles during validation or commissioning.
  • On-time regulatory approvals from ISOs/RTOs and utilities.
  • Reduced project risk and stronger financial forecasting.

Key Strategy 1: Use Publicly Posted Interconnection Requirements

What Are Interconnection Requirements?

ISOs, RTOs, and utilities publish interconnection standards and procedures that define what’s expected for modeling, controls, data exchange, and physical connection.

These include:

  • Fault ride-through capabilities
  • Reactive power requirements
  • Modeling formats (e.g., PSSE, PSCAD)
  • Frequency/watt and voltage/reactive curves

Why Reference These Early?

Referencing posted interconnection requirements at the design stage enables teams to:

  • Avoid non-compliant model iterations.
  • Reduce last-minute NERC audit issues.
  • Align component specs and controls with ISO needs (e.g., ERCOT’s DWG Procedures or CAISO’s MDWG Requirements).

Key Strategy 2: Engage OEMs Early in the Modeling Lifecycle

Why OEM Engagement Matters

Original Equipment Manufacturers (OEMs) provide models for inverters, turbines, transformers, protection systems, and control schemes. These models are essential for interconnection studies, particularly dynamic simulations.

Engaging OEMs early helps:

  • Customize model behavior to meet specific grid codes.
  • Validate models before final equipment selection.
  • Ensure model-file deliverables (PSSE, PSCAD, TSAT) are available for timely submission.

How to Engage OEMs Effectively

  1. Initiate technical discussions during procurement planning.
  2. Include modeling timelines and deliverables in RFPs and purchase agreements.
  3. Request generic + detailed user-defined models with documented block diagrams.
  4. Clarify NDA and data use policies for regulatory submission.

Key Strategy 3: Include Modeling Deliverables in Purchase Agreements

What to Include in Contracts

Contracts with OEMs should specify:

  • Timeline for model delivery (e.g., within 30 days of contract execution).
  • Model formats (e.g., *.dyr, *.dll, *.psim).
  • Model test reports (frequency response, voltage regulation, etc.).
  • Technical support during ISO/RTO validation.

Legal and Financial Leverage

When modeling deliverables are written into contracts:

  • Delays can be penalized.
  • Scope creep can be managed via formal change orders.
  • Model quality can be contractually linked to milestone payments.

Upcoming NERC Reporting Deadlines for 2025

To ensure grid reliability and modeling accuracy, NERC has issued new alerts requiring specific actions:

 Deadline 1: Acknowledge Alert – May 27, 2025

Registered entities must acknowledge receipt of the alert, confirming awareness of their obligations regarding model validation and design practices.

Deadline 2: Submit Report to NERC – August 18, 2025

Reports must detail:

  • OEM model usage
  • Modeling scope and assumptions
  • Changes made to improve design stability
  • Any deviations from posted interconnection requirements

Failure to comply can lead to:

  • Fines
  • Project certification delays
  • Public non-compliance listings

Summary: Action Plan for Developers and Engineers

Action Item Description Timeline
Review ISO/RTO interconnection guidelines Integrate into design workflows Review ISO/RTO interconnection guidelines Integrate into design workflows Immediately
Engage OEMs for early model delivery Align on formats and deliverables Q2 2025
Update contracts Add modeling-related milestones Before procurement
Acknowledge NERC Alert Submit acknowledgment By May 27, 2025
Submit full report to NERC Include all model updates By August 18, 2025

Final Thoughts

Design stability is no longer optional—it’s a compliance mandate and a competitive advantage. By embedding regulatory, technical, and procurement practices into your workflows, your project can avoid late-stage redesigns, pass audits smoothly, and bring long-term operational certainty.

For engineering consultants like Keentel Engineering, implementing these practices ensures your clients achieve both grid code compliance and design resilience across the project lifecycle.


Frequently Asked Questions (FAQs)

  • 1. What is design stability in power system projects?

    Design stability refers to maintaining consistent technical design and modeling throughout the development lifecycle to avoid late-stage changes.

  • 2. Why are interconnection requirements important?

    They set technical and regulatory expectations. Adhering to them early reduces the risk of non-compliance and rework.

  • 3. How can publicly posted interconnection requirements be accessed?

    They are typically published on ISO/RTO websites under generator interconnection or planning sections.

  • 4. What is the role of OEMs in design stability?

    OEMs provide critical dynamic and static models for simulation and compliance with grid codes.

  • 5. What model formats are usually required by ISOs?

    Common formats include PSSE (.dyr), PSCAD (.psim), and user-defined models (*.dll, *.blk).

  • 6. What is the significance of the May 27, 2025, deadline?

    This is the deadline to acknowledge receipt of the NERC alert about model quality and design stability.

  • 7. What needs to be included in the August 18, 2025, report?

    Details about modeling practices, OEM engagement, and compliance with interconnection requirements.

  • 8. What happens if modeling deliverables are delayed?

    It can delay ISO approvals, regulatory filings, and project energization.

  • 9. Can model changes trigger NERC violations?

    Yes. Unapproved or undocumented model changes can lead to compliance violations and penalties.

  • 10. How early should OEMs be engaged?

    Ideally, before final equipment selection or during the RFP stage.

  • 11. What should be in a purchase agreement regarding modeling?

    Deadlines, model formats, technical support, test reports, and penalties for delay.

  • 12. How can developers track interconnection changes?

    Set up alerts for ISO/RTO guideline updates or subscribe to planning newsletters.

  • 13. Are these NERC requirements applicable to all regions?

    Yes, for all NERC-registered entities across North America.

  • 14. Who prepares the report to NERC?

    Typically the project developer or the registered Generator Owner, often with engineering consultant support.

  • 15. How can Keentel Engineering assist with design stability?

    By providing ISO-compliant models, coordinating with OEMs, drafting contracts, and preparing regulatory reports.



A bald man with a beard is wearing a suit and a white shirt.

About the Author:

Sonny Patel P.E. EC

IEEE Senior Member

In 1995, Sandip (Sonny) R. Patel earned his Electrical Engineering degree from the University of Illinois, specializing in Electrical Engineering . But degrees don’t build legacies—action does. For three decades, he’s been shaping the future of engineering, not just as a licensed Professional Engineer across multiple states (Florida, California, New York, West Virginia, and Minnesota), but as a doer. A builder. A leader. Not just an engineer. A Licensed Electrical Contractor in Florida with an Unlimited EC license. Not just an executive. The founder and CEO of KEENTEL LLC—where expertise meets execution. Three decades. Multiple states. Endless impact.

A group of construction workers are standing next to each other with their arms crossed.

Let's Discuss Your Project

Let's book a call to discuss your electrical engineering project that we can help you with.

A bald man with a beard is wearing a suit and a white shirt.

About the Author:

Sonny Patel P.E. EC

IEEE Senior Member

In 1995, Sandip (Sonny) R. Patel earned his Electrical Engineering degree from the University of Illinois, specializing in Electrical Engineering . But degrees don’t build legacies—action does. For three decades, he’s been shaping the future of engineering, not just as a licensed Professional Engineer across multiple states (Florida, California, New York, West Virginia, and Minnesota), but as a doer. A builder. A leader. Not just an engineer. A Licensed Electrical Contractor in Florida with an Unlimited EC license. Not just an executive. The founder and CEO of KEENTEL LLC—where expertise meets execution. Three decades. Multiple states. Endless impact.

Leave a Comment

Related Posts

Enable seamless Modbus to IEC 61850 integration with the PLX82-MNET-61850 gateway. Achieve NERC comp
By SANDIP R PATEL June 26, 2025
Enable seamless Modbus to IEC 61850 integration with the PLX82-MNET-61850 gateway. Achieve NERC compliance with audit-ready substation communication.
SEL Synchrophasor Technology for Grid Monitoring | Keentel
By SANDIP R PATEL June 20, 2025
Discover how SEL synchrophasor systems, including the SEL-487E PMU, support real-time power grid monitoring and NERC PRC-002-2 compliance. Learn more with Keentel.
Explore NERC PRC-029-1 ride-through requirements for inverter-based resources (IBRs). Learn how it e
By SANDIP R PATEL June 20, 2025
Explore NERC PRC-029-1 ride-through requirements for inverter-based resources (IBRs). Learn how it enhances grid reliability with FERC Order No. 901 support.
Ensure NERC PRC-028 compliance with TESLA 4000 and Keentel Engineering’s expert integration, monitor
By SANDIP R PATEL June 19, 2025
Ensure NERC PRC-028 compliance with TESLA 4000 and Keentel Engineering’s expert integration, monitoring, and audit support services for utilities and GOs.
Ensure your relays don’t trip during stable power swings. Learn how PRC-026 compliance works, what r
By SANDIP R PATEL June 13, 2025
Ensure your relays don’t trip during stable power swings. Learn how PRC-026 compliance works, what relays it applies to, and how to automate your evaluations.
Build winning transmission proposals for PJM with Keentel. Integrated engineering + financial modeli
By SANDIP R PATEL June 9, 2025
Build winning transmission proposals for PJM with Keentel. Integrated engineering + financial modeling to support CapEx, ARR, NPV, and risk analysis.
Explore New York’s 2025 electric grid outlook — aging generation, large loads, renewables, and winte
By SANDIP R PATEL June 9, 2025
Explore NYISO’s ( New York’s) 2025 grid forecast: aging plants, AI-driven demand, winter risks, and interconnection delays plus engineering solutions from Keentel.
Dynamic Equivalents for Large Power Systems Using PSS/E | Keentel Engineering
By SANDIP R PATEL June 8, 2025
Enhance utility-scale power system modeling with PSS/E dynamic equivalents. Reduce complexity, protect data, and improve simulation accuracy using proven techniques.
Review of Large City & Metropolitan Area Power System Development Trends
By SANDIP R PATEL June 8, 2025
Explore 2025 trends in power system development in metropolitan areas. Learn how HVDC, BESS & GIS tech are modernizing city grids. Insights by Keentel Engineering.