A Coordinated Electric System Interconnection Review—the utility’s deep-dive on technical and cost impacts of your project.

Substation Earthing Design – Protecting Infrastructure and Lives

Date icon D

May 6, 2025 | Blog

Substation Earthing Design – Protecting Infrastructure and Lives

Keentel Engineering’s Approach to Safe and Compliant Earthing Systems



Substation earthing is a critical element in high-voltage (HV) and medium-voltage (MV) infrastructure. Proper grounding not only ensures operational continuity but also safeguards personnel from dangerous touch, step, and transferred voltages. At Keentel Engineering, we apply industry-leading practices—backed by EN 50522, SFS 6001, and IEEE Std 80-2013—to deliver robust earthing solutions that enhance grid reliability and critical infrastructure protection.


What Is Substation Earthing and Why It Matters

A well-designed earthing system:

  • Dissipates fault currents into the soil
  • Stabilizes system voltage during abnormal events
  • Limits touch & step voltages to safe thresholds
  • Controls transferred potentials through buried metallic paths
  • Mitigates VFTOs (Very Fast Transient Overvoltages) in GIS

Without compliance, step voltages can exceed 80 V and touch voltages can rise above 50 V—levels that pose lethal shock hazards.


Critical Design Considerations

Fault Current Duration & Path

Longer faults demand stricter voltage limits to reduce human risk exposure.

Soil Characteristics

Resistivity varies with moisture, temperature, and layering; solutions include vertical rods, ground beds, or soil enhancement.

Transferred Potentials

Underground pipes or cable shields can conduct fault currents into nearby structures, affecting public safety.

GIS Station Risks

High-frequency VFTOs during SF₆ disconnector operations can stress insulation and electronics.

Mitigation Methods

Equipotential bonding grids, insulated barriers, shielding electrodes, and surface treatments (e.g., gravel) reduce hazard voltages.


How Keentel Ensures Compliance & Safety

We use advanced tools and site-specific strategies:

  1. Detailed Soil Resistivity Surveys (Wenner, Schlumberger, Dipole–Dipole)
  2. CDEGS-Based Modeling for step/touch voltage and ground potential rise
  3. Touch & Step Voltage Mapping against EN 50522 and IEEE 80 criteria
  4. VFTO Analysis for compact GIS installations per IEC 62271-100
  5. Hazard Voltage Analysis Reports for audit readiness and safety compliance

These measures integrate electrical safety compliance with critical infrastructure protection.


FAQs | Substation Earthing & Dangerous Voltages

  • What are touch and step voltages?

    Touch voltage is the potential between a grounded object and a person’s feet; step voltage is between a person’s feet one metre apart.

  • Which standards govern earthing design?

    EN 50522, SFS 6001, and IEEE Std 80-2013; for VFTOs, refer to IEC 62271-100.

  • Why is fault duration important?

    Longer fault clearing times lower permissible touch voltages due to increased exposure.

  • How does soil resistivity affect grounding?

    High-resistivity soils require deeper electrodes, artificial ground beds, or soil conditioning.

  • What are transferred potentials?

    Fault currents can flow through buried metallic paths, endangering people and equipment far from the fault.

  • How can GIS substations pose urban risks?

    Shared earthing paths in dense areas increase transferred voltage hazards.

  • What are VFTOs?

    Very Fast Transient Overvoltages arise during GIS disconnector operations, potentially causing insulation stress.

  • How are VFTOs mitigated?

    Direct bonding of enclosures, insulating spacers, and internal shield electrodes reduce VFTO amplitude.

  • Can transferred voltages be modeled?

    Yes—3D EM simulations (e.g., CDEGS) capture complex GIS-to-urban earthing interactions.

  • What touch voltage limits apply?

    Per EN 50522, limits range from 80 V for faults >10 s to higher limits for short-duration faults.


Case Studies: Real-World Earthing Solutions

Case Study 1: Urban GIS Substation

  • Project: 110 kV GIS within a commercial block
  • Challenge: Transferred voltages via shared infrastructure
  • Solution: 3D simulation of buried paths, >100 m separation of earthing grids, insulated GIS enclosures
  • Result: External touch voltages reduced below 50 V

Case Study 2: Remote Wind-Farm Substation

  • Project: HV AIS station on high-resistivity terrain
  • Challenge: Poor fault dissipation in dry soil
  • Solution: Vertical rod clusters, layered resistivity modeling, artificial ground beds, gravel surfacing
  • Result: Step/touch voltages safely within EN 50522 limits

Case Study 3: GIS VFTO Mitigation in Compact Substation

  • Project: 220 kV GIS near a water treatment plant
  • Challenge: VFTO-induced equipment malfunctions
  • Solution: Compact grounding mesh, direct enclosure bonding, shield electrodes, isolated CT returns
  • Result: VFTO compliance tests passed; no control-system issues

Our Related Services You Can Explore

End-to-end primary and secondary substation engineering—including detailed earthing grid layouts, grounding conductor sizing, and safety studies—to ensure your HV/MV substation meets all EN 50522, IEEE Std 80, and local code requirements.

Comprehensive fault-current, load-flow, and grounding‐grid analyses (using PSCAD, PSSE, ETAP, and CDEGS) that validate your grounding design, step/touch voltages, and transient performance under worst-case fault conditions.


Ready to Secure Your Substation Earthing?

Partner with Keentel Engineering to safeguard your people and infrastructure with code-compliant, scientifically validated grounding designs.



A bald man with a beard is wearing a suit and a white shirt.

About the Author:

Sonny Patel P.E. EC

IEEE Senior Member

In 1995, Sandip (Sonny) R. Patel earned his Electrical Engineering degree from the University of Illinois, specializing in Electrical Engineering . But degrees don’t build legacies—action does. For three decades, he’s been shaping the future of engineering, not just as a licensed Professional Engineer across multiple states (Florida, California, New York, West Virginia, and Minnesota), but as a doer. A builder. A leader. Not just an engineer. A Licensed Electrical Contractor in Florida with an Unlimited EC license. Not just an executive. The founder and CEO of KEENTEL LLC—where expertise meets execution. Three decades. Multiple states. Endless impact.

A group of construction workers are standing next to each other with their arms crossed.

Let's Discuss Your Project

Let's book a call to discuss your electrical engineering project that we can help you with.

A bald man with a beard is wearing a suit and a white shirt.

About the Author:

Sonny Patel P.E. EC

IEEE Senior Member

In 1995, Sandip (Sonny) R. Patel earned his Electrical Engineering degree from the University of Illinois, specializing in Electrical Engineering . But degrees don’t build legacies—action does. For three decades, he’s been shaping the future of engineering, not just as a licensed Professional Engineer across multiple states (Florida, California, New York, West Virginia, and Minnesota), but as a doer. A builder. A leader. Not just an engineer. A Licensed Electrical Contractor in Florida with an Unlimited EC license. Not just an executive. The founder and CEO of KEENTEL LLC—where expertise meets execution. Three decades. Multiple states. Endless impact.

Leave a Comment

Related Posts

Enable seamless Modbus to IEC 61850 integration with the PLX82-MNET-61850 gateway. Achieve NERC comp
By SANDIP R PATEL June 26, 2025
Enable seamless Modbus to IEC 61850 integration with the PLX82-MNET-61850 gateway. Achieve NERC compliance with audit-ready substation communication.
SEL Synchrophasor Technology for Grid Monitoring | Keentel
By SANDIP R PATEL June 20, 2025
Discover how SEL synchrophasor systems, including the SEL-487E PMU, support real-time power grid monitoring and NERC PRC-002-2 compliance. Learn more with Keentel.
Explore NERC PRC-029-1 ride-through requirements for inverter-based resources (IBRs). Learn how it e
By SANDIP R PATEL June 20, 2025
Explore NERC PRC-029-1 ride-through requirements for inverter-based resources (IBRs). Learn how it enhances grid reliability with FERC Order No. 901 support.
Ensure NERC PRC-028 compliance with TESLA 4000 and Keentel Engineering’s expert integration, monitor
By SANDIP R PATEL June 19, 2025
Ensure NERC PRC-028 compliance with TESLA 4000 and Keentel Engineering’s expert integration, monitoring, and audit support services for utilities and GOs.
Ensure your relays don’t trip during stable power swings. Learn how PRC-026 compliance works, what r
By SANDIP R PATEL June 13, 2025
Ensure your relays don’t trip during stable power swings. Learn how PRC-026 compliance works, what relays it applies to, and how to automate your evaluations.
Build winning transmission proposals for PJM with Keentel. Integrated engineering + financial modeli
By SANDIP R PATEL June 9, 2025
Build winning transmission proposals for PJM with Keentel. Integrated engineering + financial modeling to support CapEx, ARR, NPV, and risk analysis.
Explore New York’s 2025 electric grid outlook — aging generation, large loads, renewables, and winte
By SANDIP R PATEL June 9, 2025
Explore NYISO’s ( New York’s) 2025 grid forecast: aging plants, AI-driven demand, winter risks, and interconnection delays plus engineering solutions from Keentel.
Dynamic Equivalents for Large Power Systems Using PSS/E | Keentel Engineering
By SANDIP R PATEL June 8, 2025
Enhance utility-scale power system modeling with PSS/E dynamic equivalents. Reduce complexity, protect data, and improve simulation accuracy using proven techniques.
Review of Large City & Metropolitan Area Power System Development Trends
By SANDIP R PATEL June 8, 2025
Explore 2025 trends in power system development in metropolitan areas. Learn how HVDC, BESS & GIS tech are modernizing city grids. Insights by Keentel Engineering.